Because charged residues at the intracellular ends of transmembrane helix (TMH) 2 and TMH3 of G protein-coupled receptors (GPCRs) affect signaling, we performed mutational analysis of these residues in the constitutively signaling Kaposi's sarcoma-associated herpesvirus GPCR (KSHV-GPCR). KSHV-GPCR contains the amino acid sequence Val-Arg-Tyr rather than the Asp/Glu-Arg-Tyr ((D/ E)RY) motif at the intracellular end of TMH3. Mutation of Arg-143 to Ala (R143A) or Gln (R143Q) abolished constitutive signaling whereas R143K exhibited 50% of the basal activity of KSHV-GPCR. R143A was not stimulated by agonist, whereas R143Q was stimulated by growth-related oncogene-␣, and R143K, similar to KSHV-GPCR, was stimulated further. These findings show that Arg-143 is critical for signal generation in KSHV-GPCR. In other GPCRs, Arg in this position may act as a signaling switch by movement of its sidechain from a hydrophilic pocket in the TMH bundle to a position outside the bundle. In rhodopsin, the Arg of Glu-Arg-Tyr interacts with the adjacent Asp to constrain Arg outside the TMH bundle. V142D was 70% more active than KSHV-GPCR, suggesting that an Arg residue, which is constrained outside the bundle by interacting with Asp-142, leads to a receptor that signals more actively. Because the usually conserved Asp in the middle of TMH2 is not present in KSHV-GPCR, we tested whether Asp-83 at the intracellular end of TMH2 was involved in signaling. D83N and D83A were 110 and 190% more active than KSHV-GPCR, respectively. The double mutant D83A/V142D was 510% more active than KSHV-GPCR. That is, cosubstitutions of Asp-83 by Ala and Val-142 by Asp act synergistically to increase basal signaling. A model of KSHV-GPCR predicts that Arg-143 interacts with residues in the TMH bundle and that the sidechain of Asp-83 does not interact with Arg-143. These data are consistent with the hypothesis that Arg-143 and Asp-83 independently affect the signaling activity of KSHV-GPCR.