Abstract. The aim of the present study was to investigate the effects of microRNA-18a (miR-18a) on the invasiveness and metastasis of invasive meningiomas and the underlying mechanism. A total of 69 patients with meningiomas (30 patients in the invasive meningioma group and 39 patients in the non-invasive meningioma group) and 48 cases in the control group were enrolled. Samples of meningioma tissues, serum and cerebrospinal fluid were collected. Reverse transcription-quantitative polymerase chain reaction was performed to quantify the expression levels of hypoxia-inducible factor-1α (HIF-1α) mRNA and miR-18a. Western blot analysis was used to determine protein expression levels of HIF-1α. The expression levels of HIF-1α mRNA and protein in all three types of sample from the invasive meningioma group were significantly higher compared with those in the control and non-invasive meningioma groups (P<0.05), and the expression levels of HIF-1α mRNA in the serum and cerebrospinal fluid of the non-invasive meningioma group were significantly higher compared with those in the control group (P<0.05). The expression levels of miR-18a in the invasive meningioma group were significantly reduced compared with those in the control and non-invasive meningioma groups (P<0.05), whereas the levels of miR-18a in the non-invasive meningioma group were significantly lower compared with those in the control group (P<0.05). The expression of HIF-1α is significantly upregulated in patients with invasive meningiomas, possibly due to the downregulation of miR-18a expression. Therefore, miR-18a may regulate invasive meningiomas via HIF-1α.