AbstractMultiple players are involved in the brain integrative action besides the classical neuronal and astrocyte networks. In the past, the concept of complex cellular networks has been introduced to indicate that all the cell types in the brain can play roles in its integrative action. Intercellular communication in the complex cellular networks depends not only on well-delimited communication channels (wiring transmission) but also on diffusion of signals in physically poorly delimited extracellular space pathways (volume transmission). Thus, the extracellular space and the extracellular matrix are the main players in the intercellular communication modes in the brain. Hence, the extracellular matrix is an ‘intelligent glue’ that fills the brain and, together with the extracellular space, contributes to the building-up of the complex cellular networks. In addition, the extracellular matrix is part of what has been defined as the global molecular network enmeshing the entire central nervous system, and plays important roles in synaptic contact homeostasis and plasticity. From these premises, a concept is introduced that the global molecular network, by enmeshing the central nervous system, contributes to the brain holistic behavior. Furthermore, it is suggested that plastic ‘brain compartments’ can be detected in the central nervous system based on the astrocyte three-dimensional tiling of the brain volume and on the existence of local differences in cell types and extracellular space fluid and extracellular matrix composition. The relevance of the present view for neuropsychiatry is discussed. A glossary box with terms and definitions is provided.