The cerebral hyperaemia is one of the fundamental mechanisms for the central nervous system homeostasis. Due also to this mechanism, oxygen and nutrients are maintained in satisfactory levels, through vasodilation and vasoconstriction. The brain hyperaemia, or coupling, is accomplished by a group of cells, closely related to each other; called neurovascular unit (NVU). The neurovascular unit is composed by neurones, astrocytes, endothelial cells of blood-brain barrier (BBB), myocytes, pericytes and extracellular matrix components. These cells, through their intimate anatomical and chemical relationship, detect the needs of neuronal supply and trigger necessary responses (vasodilation or vasoconstriction) for such demands. Here, we review the concepts of NVU, the coupling mechanisms and research strategies.
Summary Objective Blood–brain barrier (BBB) impairment, redistribution of pericytes, and disturbances in cerebral blood flow may contribute to the increased seizure propensity and neurological comorbidities associated with epilepsy. However, despite the growing evidence of postictal disturbances in microcirculation, it is not known how recurrent seizures influence pericytic membrane currents and subsequent vasodilation. Methods Here, we investigated successive changes in capillary neurovascular coupling and BBB integrity during recurrent seizures induced by 4‐aminopyridine or low‐Mg2+ conditions. To avoid the influence of arteriolar dilation and cerebral blood flow changes on the capillary response, we measured seizure‐associated pericytic membrane currents, capillary motility, and permeability changes in a brain slice preparation. Arteriolar responses to 4‐aminopyridine–induced seizures were further studied in anesthetized Sprague Dawley rats by using electrocorticography and tissue oxygen recordings simultaneously with intravital imaging of arteriolar diameter, BBB permeability, and cellular damage. Results Within the preserved vascular network in hippocampal slice cultures, pericytes regulated capillary diameter in response to vasoactive agents and neuronal activity. Seizures induced distinct patterns of membrane currents that contributed to the regulation of pericytic length. During the course of recurrent seizures, individual vasodilation responses eroded and BBB permeability increased, despite unaltered neurometabolic coupling. Reduced vascular responsiveness was associated with mitochondrial depolarization in pericytes. Subsequent capillary constriction preceded BBB opening, suggesting that pericyte injury mediates the breach in capillary integrity. In vivo findings were consistent with slice experiments, showing seizure‐related neurovascular decoupling and BBB dysfunction in small cortical arterioles, accompanied by perivascular cellular injury despite normoxic conditions. Significance Our study presents a direct observation of gradually developing neurovascular decoupling during recurrent seizures and suggests pericytic injury as an inducer of vascular dysfunction in epilepsy.
Women are often subjected to serum human chorionic gonadotropin (HCG) testing prior to diagnostic and therapeutic interventions. A positive result leads to further testing to rule out pregnancy and avoid possible fetal teratogenicity. The impact of chronic kidney disease (CKD) on HCG testing has not been studied. We report a series of 5 women out of 62 with CKD, who had a positive HCG test on routine pre-transplant screening at a single transplant center. We analyzed their case records retrospectively. Despite aggressive investigation, their elevated HCG levels remained unexplained. The positive test contributed to delays in transplantation and increased overall cost of treatment.
For esophageal reconstruction in newborns with esophageal atresia, esophageal reunion with an end-to-end anastomosis is the ideal procedure, although it may result in leaks and strictures due to tension on the suture line, mainly in cases with a wide gap between the ends. Circular myotomy (Livaditis' procedure) is the best method to elongate the proximal esophageal pouch and reduce anastomotic tension. This experimental investigation in dogs was undertaken to attempt to verify that circular myotomy decreases the anastomotic leak rate in newborns with wide gap esophageal atresia, and to analyze whether the technique promotes morphologic changes in the anastomotic scar. A pilot study demonstrated that it is necessary to resect more than 8 cm (40% of the total esophageal length) in order to obtain high leak rates. In the experimental project, such resection was performed in dogs divided into two groups (control group, anastomosis only, and experimental group, anastomosis plus circular myotomy in the proximal esophageal segment). The animals were killed in the 14th postoperative day, submitted to autopsy, and were evaluated as to the presence of leaks and strictures, as well as to the features (macroscopic and microscopic aspects) of the anastomosis. Leak rates were the same in both groups. Morphometric analysis revealed that in animals in the experimental group, the anastomotic scar was thinner than the control animals, and the isolated muscular manchette distal to the site of myotomy was replaced by fibrous tissue. Correspondingly, a decreased number of newly formed small vessels were noted in the experimental animals, compared to control animals. We concluded that circular myotomy does not decrease the incidence of anastomotic leaks, and it also promotes deleterious changes in anastomotic healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.