Boron largely increases the ductility of polycrystalline high-temperature Co-Re-Cr alloys. Therefore, the effect of boron addition on the alloy structural characteristics is of large importance for the stability of the alloy at operational temperatures. Along with the Co-solid solution matrix phase transformation from hcp to fcc structure, additional structural effects were observed in situ at very high temperatures (up to 1500 • C) using neutron diffraction (ND) in boron-containing Co-17Re-23Cr alloys. Increasing boron content up to 1000 wt. ppm lowers the temperature at which sublimation of Co and Cr from the matrix occurs. As a result, the composition of the matrix in the surface region is changed leading to the formation of a second and a third matrix hcp phases at high temperatures. The consideration on the lattice parameter dependence on composition was used to identify the new phases appearing at high temperatures. Energy-dispersive spectroscopy and ND results were used to estimate the amount of Co and Cr which sublimated from the surface region of the high-boron sample. In the sense of alloy development, the sublimation of Co and Cr is not critical as the temperature range where it is observed (≥1430 • C) is significantly above the foreseen operation temperature of the alloys (1200 • C).