In a rat model of morphine tolerance, we examined the hypotheses that thermal hyperalgesia to radiant heat develops in association with the development of morphine tolerance and that both the development and expression of thermal hyperalgesia in morphine-tolerant rats are mediated by central NMDA and non-NMDA receptors and subsequent protein kinase C (PKC) activation. Tolerance to the analgesic effect of morphine was developed in rats utilizing an intrathecal repeated treatment regimen. The development of morphine tolerance and thermal hyperalgesia was examined by employing the tail-flick test and paw- withdrawal test, respectively. Intrathecal MK 801 (an NMDA receptor antagonist), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; a non-NMDA receptor antagonist), or GM1 ganglioside (an intracellular PKC inhibitor) treatment was given to examine the effects of these agents on the development and expression of thermal hyperalgesia in morphine- tolerant rats. Tolerance to the analgesic effect of morphine was reliably developed in rats following once daily intrathecal (onto the lumbosacral spinal cord) injection of 10 micrograms of morphine sulfate for 8 consecutive days as demonstrated by the decreased analgesia following morphine administration on day 8 as compared to that on day 1. In association with the development of morphine tolerance, thermal hyperalgesia to radiant heat developed in these same rats. Paw- withdrawal latencies were reliably decreased in morphine-tolerant rats as compared to nontolerant (saline) controls when tested on day 8 before the last morphine treatment and on day 10 (i.e., 48 hr after the last morphine treatment). The coincident development of morphine tolerance and thermal hyperalgesia was potently prevented by intrathecal coadministration of morphine with MK 801 (10 nmol) or GM1 (160 nmol), and partially by CNQX (80 nmol). MK 801 (5, 10 nmol, not 2.5 nmol) and CNQX (80, 160 nmol, not 40 nmol), but not GM1 (160 nmol), also reliably reversed thermal hyperalgesia in rats rendered tolerant to morphine when tested 30 min after each drug treatment on day 10 (48 hr after the last morphine treatment). The data indicate that thermal hyperalgesia develops in association with the development of morphine tolerance and that the coactivation of central NMDA and non-NMDA receptors is crucial for both the development and expression of thermal hyperalgesia in morphine-tolerant rats. Furthermore, intracellular PKC activation plays a critical role in the development of thermal hyperalgesia in morphine-tolerant rats.(ABSTRACT TRUNCATED AT 400 WORDS)