In this paper, the quasi-frame and quasi-formulas are introduced in Galilean three-space. In addition, the quasi-Bertrand and the quasi-Mannheim curves are studied. It is proven that the angle between the tangents of two quasi-Bertrand or quasi-Mannhiem curves is not constant. Furthermore, the quasi-involute is studied. Moreover, we prove that there is no quasi-evolute curve in Galilean three-space. Also, we introduce quasi-Smarandache curves in Galilean three-space. Finally, we demonstrate an illustrated example to present our findings.