The small ubiquitin-related modifiers (SUMOs) regulate nearly every aspect of cellular function, from gene expression in the nucleus to ion transport at the plasma membrane. In humans, the SUMO pathway has five SUMO paralogs with sequence homologies that range from 45% to 97%. SUMO1 and SUMO2 are the most distantly related paralogs, and also the best studied. To what extent SUMO1, SUMO2 and the other paralogs impart unique and non-redundant effects on cellular functions, however, has not been systematically examined and is therefore not fully understood. For instance, knockout studies in mice have revealed conflicting requirements for the paralogs during development and studies in cell culture have relied largely on transient paralog overexpression or knockdown. To address the existing gap in understanding, we first analyzed SUMO paralog gene expression levels in normal human tissues and found unique patterns of SUMO1-3 expression across 30 tissue types, suggesting paralog-specific functions in adult human tissues. To systematically identify and characterize unique and non-redundant functions of the SUMO paralogs in human cells, we next used CRISPR-Cas9 to knock out SUMO1 and SUMO2 expression in osteosarcoma (U2OS) cells. Analysis of these knockout cell lines revealed essential functions for SUMO1 and SUMO2 in regulating cellular morphology, PML nuclear body structure, responses to proteotoxic and genotoxic stress, and control of gene expression. Collectively, our findings reveal non-redundant regulatory roles for SUMO1 and SUMO2 in controlling essential cellular processes and provide a basis for more precise SUMO-targeting therapies.