Motivated from studies on anomalous relaxation and diffusion, we show that the memory function M(t) of complex materials, that their creep compliance follows a power law, J(t)∼tq with q∈R+, is proportional to the fractional derivative of the Dirac delta function, dqδ(t−0)dtq with q∈R+. This leads to the finding that the inverse Laplace transform of sq for any q∈R+ is the fractional derivative of the Dirac delta function, dqδ(t−0)dtq. This result, in association with the convolution theorem, makes possible the calculation of the inverse Laplace transform of sqsα∓λ where α<q∈R+, which is the fractional derivative of order q of the Rabotnov function εα−1(±λ,t)=tα−1Eα,α(±λtα). The fractional derivative of order q∈R+ of the Rabotnov function, εα−1(±λ,t) produces singularities that are extracted with a finite number of fractional derivatives of the Dirac delta function depending on the strength of q in association with the recurrence formula of the two-parameter Mittag–Leffler function.