The heparin binding site of the anticoagulant protein antithrombin III (ATIII) has been defined at high resolution by alanine scanning mutagenesis of 17 basic residues previously thought to interact with the cofactor based on chemical modification experiments, analysis of naturally occurring dysfunctional antithrombins, and proximity to helix D. The baculovirus expression system employed for this study produces antithrombin which is highly similar to plasma ATIII in its inhibition of thrombin and factor Xa and which resembles the naturally occurring -ATIII isoform in its interactions with high affinity heparin and pentasaccharide (Ersdal-Badju, E., Lu, A., Peng, X., Picard, V., Zendehrouh, P., Turk, B., Bjö rk, I., Olson, S. T., and Bock, S. C. (1995) Biochem. J. 310, 323-330). Relative heparin affinities of basic-to-Ala substitution mutants were determined by NaCl gradient elution from heparin columns. The data show that only a subset of the previously implicated basic residues are critical for binding to heparin. The key heparin binding residues, Lys-11, Arg-13, Arg-24, Arg-47, Lys-125, Arg-129, and Arg-145, line a 50-Å long channel on the surface of ATIII. Comparisons of binding residue positions in the structure of P14-inserted ATIII and models of native antithrombin, derived from the structures of native ovalbumin and native antichymotrypsin, suggest that heparin may activate antithrombin by breaking salt bridges that stabilize its native conformation. Specifically, heparin release of intramolecular helix D-sheet B salt bridges may facilitate s123AhDEF movement and generation of an activated species that is conformationally primed for reactive loop uptake by central -sheet A and for inhibitory complex formation. In addition to providing a structural explanation for the conformational change observed upon heparin binding to antithrombin III, differences in the affinities of native, heparin-bound, complexed, and cleaved ATIII molecules for heparin can be explained based on the identified binding site and suggest why heparin functions catalytically and is released from antithrombin upon inhibitory complex formation.