The beta-form of antithrombin, lacking a carbohydrate side chain on Asn-135, is known to bind heparin more tightly than the fully glycosylated alpha-form. The molecular basis for this difference in affinity was elucidated by rapid-kinetic studies of the binding of heparin and the antithrombin-binding heparin pentasaccharide to plasma and recombinant forms of alpha- and beta-antithrombin. The dissociation equilibrium constant for the first step of the two-step mechanism of binding of both heparin and pentasaccharide to alpha-antithrombin was only slightly higher than that for the binding to the beta-form. The oligosaccharide at Asn-135 thus at most moderately interferes with the initial, weak binding of heparin to alpha-antithrombin. In contrast, the rate constant for the conformational change induced by heparin and pentasaccharide in the second binding step was substantially lower for alpha-antithrombin than for beta-antithrombin. Moreover, the rate constant for the reversal of this conformational change was appreciably higher for the alpha-form than for the beta-form. The carbohydrate side chain at Asn-135 thus reduces the heparin affinity of alpha-antithrombin primarily by interfering with the heparin-induced conformational change. These and previous results suggest a model in which the Asn-135 oligosaccharide of alpha-antithrombin is oriented away from the heparin binding site and does not interfere with the first step of heparin binding. This initial binding induces conformational changes involving extension of helix D into the adjacent region containing Asn-135, which are transmitted to the reactive-bond loop. The resulting decreased conformational flexibility of the Asn-135 oligosaccharide and its close vicinity to the heparin binding site destabilize the activated relative to the native conformation. This effect results in a higher energy for inducing the activated conformation in alpha-antithrombin, leading to a decrease in heparin binding affinity.
A rapid method for efficiently generating site-directed mutations on a clean sequence background is described. This modification of the megaprimer PCR mutagenesis approach can be performed in one tube in less than 4.5 hours, and does not require purification of intermediate products. High fidelity of DNA sequence replication is obtained by employing Pfu DNA polymerase and limiting the total number of amplification cycles to 30. The mutagenesis efficiency of the procedure is high enough to allow rapid, direct identification of mutants by restriction digest or sequencing techniques.
The primary structure of human C1 inhibitor was determined by peptide and DNA sequencing. The single-chain polypeptide moiety of the intact inhibitor is 478 residues (52,869 Da), accounting for only 51% of the apparent molecular mass of the circulating protein (104,000 Da). The positions of six glucosamine-based and five galactosamine-based oligosaccharides were determined. Another nine threonine residues are probably also glycosylated. Most of the carbohydrate prosthetic groups (probably 17) are located at the amino-terminal end (residues 1-120) of the protein and are particularly concentrated in a region where the tetrapeptide sequence Glx-Pro-Thr-Thr, and variants thereof, is repeated 7 times. No phosphate was detected in C1 inhibitor. Two disulfide bridges connect cysteine-101 to cysteine-406 and cysteine-108 to cysteine-183. Comparison of the amino acid and cDNA sequences indicates that secretion is mediated by a 22-residue signal peptide and that further proteolytic processing does not occur. C1 inhibitor is a member of the large serine protease inhibitor (serpin) gene family. The homology concerns residues 120 through the C-terminus. The sequence was compared with those of nine other serpins, and conserved and nonconserved regions correlated with elements in the tertiary structure of alpha 1-antitrypsin. The C1 inhibitor gene maps to chromosome 11, p11.2-q13. C1 inhibitor genes of patients from four hereditary angioneurotic edema kindreds do not have obvious deletions or rearrangements in the C1 inhibitor locus. A HgiAI DNA polymorphism, identified following the observation of sequence variants, will be useful as a linkage marker in studies of mutant C1 inhibitor genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.