Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Accretion bursts from low-mass young stellar objects (YSOs) have been known for many decades. In recent years, the first accretion bursts of massive YSOs (MYSOs) have been observed. These phases of intense protostellar growth are of particular importance for studying massive star formation. Bursts of MYSOs are accompanied by flares of Class II methanol masers (hereafter masers), which are caused by an increase in exciting mid-infrared (MIR) emission. They can lead to long-lasting thermal afterglows of the dust continuum radiation visible at infrared (IR) and (sub)millimeter (hereafter (sub)mm) wavelengths. Furthermore, they might cause a scattered light echo. The G323.46$-$0.08 (hereafter G323) event, which shows all these features, extends the small sample of known MYSO bursts. Maser observations of the MYSO G323 show evidence of a flare, which was presumed to be caused by an accretion burst. This should be verified with IR data. We used time-dependent radiative transfer (TDRT) to characterize the heating and cooling timescales for eruptive MYSOs and to infer the main burst parameters. Burst light curves, as well as the pre-burst spectral energy distribution (SED) were established from archival IR data. The properties of the MYSO, including its circumstellar disk and envelope, were derived by using static radiative transfer modeling of pre-burst data. For the first time, TDRT was used to predict the temporal evolution of the SED. Observations with SOFIA/HAWC+ were performed to constrain the burst energy from the strength of the thermal afterglow. Image subtraction and ratioing were applied to reveal the light echo. The G323 accretion burst is confirmed. It reached its peak in late 2013/early 2014 with a $K_ s $-band increase of $ sim ts ts mag. Both $K_ s $-band and integrated maser flux densities follow an exponential decay. TDRT indicates that the duration of the thermal afterglow in the far-infrared (FIR) can exceed the burst duration by years. The latter was proved by SOFIA observations, which indicate a flux increase of $(14.2 at $70\ m$ and $(8.5 at ts in 2022 (2 years after the burst ended). A one-sided light echo emerged that was propagating into the interstellar medium. The burst origin of the G323 maser flare has been verified. TDRT simulations revealed the strong influence of the burst energetics and the local dust distribution on the strength and duration of the afterglow. The G323 burst is probably the most energetic MYSO burst that has been observed so far. Within $8.4 \, yrs$, an energy of $(0.9 erg$ was released. The short timescale points to the accretion of a compact body, while the burst energy corresponds to an accumulated mass of at least $(7 Jup $ and possibly even more if the protostar is bloated. In this case, the accretion event might have triggered protostellar pulsations, which give rise to the observed maser periodicity. The associated IR light echo is the second observed from a MYSO burst.
Accretion bursts from low-mass young stellar objects (YSOs) have been known for many decades. In recent years, the first accretion bursts of massive YSOs (MYSOs) have been observed. These phases of intense protostellar growth are of particular importance for studying massive star formation. Bursts of MYSOs are accompanied by flares of Class II methanol masers (hereafter masers), which are caused by an increase in exciting mid-infrared (MIR) emission. They can lead to long-lasting thermal afterglows of the dust continuum radiation visible at infrared (IR) and (sub)millimeter (hereafter (sub)mm) wavelengths. Furthermore, they might cause a scattered light echo. The G323.46$-$0.08 (hereafter G323) event, which shows all these features, extends the small sample of known MYSO bursts. Maser observations of the MYSO G323 show evidence of a flare, which was presumed to be caused by an accretion burst. This should be verified with IR data. We used time-dependent radiative transfer (TDRT) to characterize the heating and cooling timescales for eruptive MYSOs and to infer the main burst parameters. Burst light curves, as well as the pre-burst spectral energy distribution (SED) were established from archival IR data. The properties of the MYSO, including its circumstellar disk and envelope, were derived by using static radiative transfer modeling of pre-burst data. For the first time, TDRT was used to predict the temporal evolution of the SED. Observations with SOFIA/HAWC+ were performed to constrain the burst energy from the strength of the thermal afterglow. Image subtraction and ratioing were applied to reveal the light echo. The G323 accretion burst is confirmed. It reached its peak in late 2013/early 2014 with a $K_ s $-band increase of $ sim ts ts mag. Both $K_ s $-band and integrated maser flux densities follow an exponential decay. TDRT indicates that the duration of the thermal afterglow in the far-infrared (FIR) can exceed the burst duration by years. The latter was proved by SOFIA observations, which indicate a flux increase of $(14.2 at $70\ m$ and $(8.5 at ts in 2022 (2 years after the burst ended). A one-sided light echo emerged that was propagating into the interstellar medium. The burst origin of the G323 maser flare has been verified. TDRT simulations revealed the strong influence of the burst energetics and the local dust distribution on the strength and duration of the afterglow. The G323 burst is probably the most energetic MYSO burst that has been observed so far. Within $8.4 \, yrs$, an energy of $(0.9 erg$ was released. The short timescale points to the accretion of a compact body, while the burst energy corresponds to an accumulated mass of at least $(7 Jup $ and possibly even more if the protostar is bloated. In this case, the accretion event might have triggered protostellar pulsations, which give rise to the observed maser periodicity. The associated IR light echo is the second observed from a MYSO burst.
Surveys in the Milky Way and Large Magellanic Cloud have revealed that the majority of massive stars will interact with companions during their lives. However, knowledge of the binary properties of massive stars at low metallicity, and therefore in conditions approaching those of the Early Universe, remain sparse. We present the Binarity at LOw Metallicity (BLOeM) campaign, an ESO large programme designed to obtain 25 epochs of spectroscopy for 929 massive stars in the Small Magellanic Cloud, allowing us to probe multiplicity in the lowest-metallicity conditions to date (Z = 0.2 Z⊙). BLOeM will provide (i) the binary fraction, (ii) the orbital configurations of systems with periods of P ≲ 3 yr, (iii) dormant black-hole binary candidates (OB+BH), and (iv) a legacy database of physical parameters of massive stars at low metallicity. Main sequence (OB-type) and evolved (OBAF-type) massive stars are observed with the LR02 setup of the GIRAFFE instrument of the Very Large Telescope (3960–4570 Å resolving power R = 6200; typical signal-to-noise ratio(S/N) ≈70–100). This paper utilises the first nine epochs obtained over a three-month time period. We describe the survey and data reduction, perform a spectral classification of the stacked spectra, and construct a Hertzsprung-Russell diagram of the sample via spectral-type and photometric calibrations. Our detailed classification reveals that the sample covers spectral types from O4 to F5, spanning the effective temperature and luminosity ranges 6.5 ≲ Teff/kK ≲ 45 and 3.7 < log L/L⊙ < 6.1 and initial masses of 8 ≲ Mini ≲ 80 M⊙. The sample comprises 159 O-type stars, 331 early B-type (B0–3) dwarfs and giants (luminosity classes V–III), 303 early B-type supergiants (II–I), and 136 late-type BAF supergiants. At least 82 stars are OBe stars: 20 O-type and 62 B-type (13% and 11% of the respective samples). In addition, the sample includes 4 high-mass X-ray binaries, 3 stars resembling luminous blue variables, 2 bloated stripped-star candidates, 2 candidate magnetic stars, and 74 eclipsing binaries.
Constraints on the binary fraction of massive young stellar objects (mYSOs) are important for binary and massive star formation theory. Here, we present speckle imaging of 34 mYSOs located in the Large Magellanic Cloud (1/2 Z ⊙) and Small Magellanic Cloud (∼1/5 Z ⊙), probing projected separations in the 2000 to 20,000 au (at angular scales of 0.″02–0.″2) range, for stars above 8 M ⊙. We find two wide binaries in the Large Magellanic Cloud (from a sample of 23 targets), but none in a sample of 11 in the Small Magellanic Cloud, leading us to adopt a wide binary fraction of 9% ± 5% and <5%, respectively. We rule out a wide binary fraction greater than 35% in the Large Magellanic Cloud and 38% in the Small Magellanic Cloud at the 99% confidence level. This is in contrast to the wide binary fraction of mYSOs in the Milky Way (presumed to be 1 Z ⊙), which within the physical parameter space probed by this study is ∼15%–60% from the literature. We argue that while selection effects could be responsible for the lower binary fraction observed, it is more likely that there are underlying physical mechanisms responsible for the observed properties. This indicates that metallicity and environmental effects may influence the formation of wide binaries among massive stars. Future larger, more statistically significant samples of high-mass systems in low-metallicity environments for comparison to the Milky Way, are essential to confirm or repudiate our claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.