BACKGROUND: The brown planthopper (Nilaparvata lugens) is one of the major rice insect pests in Asia. Recently, high levels of insecticide resistance have been frequently reported and cytochrome P450 monooxygenase (P450)-mediated metabolic detoxification is a common resistance mechanism in N. lugens. However, there has been no persuasive genetic method to prove the role of P450s in insecticide resistance in N. lugens.RESULTS: Here, CRISPR/Cas9 system was used to disrupt the P450 gene NlCYP6CS1 to elucidate its role in insecticide resistance in field populations of N. lugens. We successfully constructed a homozygous strain (Nl6CS1-KO) with a 5-bp deletion and 1-bp insertion mutation of NlCYP6CS1. Compared with a background resistant strain (Nl-R), the susceptibility of knockout strain Nl6CS1-KO to imidacloprid, nitenpyram, thiamethoxam, dinotefuran, and pymetrozine was increased by 2.3-, 3.4-, 7.0-, 4.2and 3.9-fold, respectively, but not significantly changed to triflumezopyrim, chlorpyrifos and buprofezin. Life table analysis demonstrated that the Nl6CS1-KO strain resembled the Nl-R strain in terms of egg and nymph developmental duration and adult lifespan, but differed from the Nl-R strain in the survival rate of eggs and nymphs, reproduction, and body weight.CONCLUSIONS: Our study demonstrates the effect of functional deletion of NlCYP6CS1 on multiple insecticide resistance in N. lugens. For the first time, we applied CRISPR/Cas9 system to reveal the mechanism of insecticide resistance in N. lugens, which may shed light on similar studies in other hemipteran insects.