As thallium (Tl) is a highly toxic heavy metal, there are compulsory environmental regulations in many countries on minimizing its release. This research investigated the treatment of real industrial wastewater with low Tl(I) concentration by Fe0-electrocoagulation (Fe0-EC) in a batch aeration-forced pump cycle reactor. The effects of pH (7–12), current density (8.3–33.3 mA/cm2), dissolved oxygen (DO) in wastewater, and initial Tl(I) concentration (66–165 µg/L) on Tl(I) removal efficiency were investigated. The removal efficiency of Tl(I) is pH-dependent, to be exact, it increases significantly with pH rising from 8 to 11. Initial pH of influent and DO concentration were the key operation parameters which strongly affect Tl(I) removal. After the water sample with initial Tl(I) concentration of 115 µg/L was treated for 12 min by a single-step process at pH of 11 and current density of 16.7 mA/cm2, the residual Tl(I) concentration was decreased to beneath the emission limit in China (2 µg/L) with a low energy consumption of 0.82 kWh/m3. By prolonging the operation time, the concentration was further reduced to 0.5 µg/L or even lower. The main composition of the flocculent sludges is iron oxyhydroxide, yet its crystal structure varies dependent on pH value which may result in different Tl(I) removal efficiency. Feroxyhyte nanosheets generate in situ by Fe0-EC, which contributes to the rapid and effective removal of Tl(I), while the speedy oxidation under DO-enriched conditions benefits the feroxyhyte formation. The mechanism of Tl(I) removal by Fe0-EC is attributed to the combination of electrostatic attraction and the formation of inner-sphere complexes. As shown in the technical and mechanical studies, Fe0-EC technology is an effective method for low Tl concentration removal from wastewater.