Exercise training (Ex) has been recommended for its beneficial effects in
hypertensive states. The present study evaluated the time-course effects of Ex
without workload on mean arterial pressure (MAP), reflex bradycardia, cardiac and
renal histology, and oxidative stress in two-kidney, one-clip (2K1C) hypertensive
rats. Male Fischer rats (10 weeks old; 150–180 g) underwent surgery (2K1C or SHAM)
and were subsequently divided into a sedentary (SED) group and Ex group (swimming 1
h/day, 5 days/week for 2, 4, 6, 8, or 10 weeks). Until week 4, Ex decreased MAP,
increased reflex bradycardia, prevented concentric hypertrophy, reduced collagen
deposition in the myocardium and kidneys, decreased the level of thiobarbituric
acid-reactive substances (TBARS) in the left ventricle, and increased the catalase
(CAT) activity in the left ventricle and both kidneys. From week 6 to week 10,
however, MAP and reflex bradycardia in 2K1C Ex rats became similar to those in 2K1C
SED rats. Ex effectively reduced heart rate and prevented collagen deposition in the
heart and both kidneys up to week 10, and restored the level of TBARS in the left
ventricle and clipped kidney and the CAT activity in both kidneys until week 8. Ex
without workload for 10 weeks in 2K1C rats provided distinct beneficial effects. The
early effects of Ex on cardiovascular function included reversing MAP and reflex
bradycardia. The later effects of Ex included preventing structural alterations in
the heart and kidney by decreasing oxidative stress and reducing injuries in these
organs during hypertension.