This study examined the effects of cues to motion in depth - namely, stereoscopic (i.e., changing-disparity cues and interocular velocity differences) and changing-size cues on forward and backward vection. We conducted four experiments in which participants viewed expanding or contracting optical flows with the addition of either or both cues. In Experiment 1, participants reported vection by pressing a button whenever they felt it. After each trial, they also rated the magnitude of the vection (from 0 to 100). In Experiments 2 and 3, the participants rated the perceived velocity and motion-in-depth impression of the flows relative to standard stimuli, respectively. In Experiment 4, the participants rated the perceived depth and distance of the display. We observed enhancements in vection, motion-in-depth impression, and perceived depth and distance when either or both types of cues indicated motion-in-depth, as compared to those when the cues did not (Experiments 1, 3, and 4). The perceived velocity changed with cue conditions only for the high velocity condition (Experiment 2). Correlational analyses showed that the vection can be best explained by the motion-in-depth impression. This was partially supported by the multiple regression analyses. These results indicate that the enhancement of vection caused by cues is related to the impression of motion-in-depth rather than the perceived velocity and perceived three-dimensionality.