Introduction. Lung cancer is one of the most critical diseases globally, with more than 1.6 million new cases registered every year. Early detection of lung cancer is essential; therefore, particular attention should be paid to the development of effective diagnostic and therapeutic procedures. Computer processing of CT scans in the course of lung cancer diagnostics involves the following stages: medical image acquisition, pre-processing of medical images, segmentation, and false-positive reduction. Since segmentation is an essential stage in the process of medical image analysis, the development of novel segmentation approaches is attracting much research interest. Model-based segmentation approaches have recently gained in popularity, largely due to their potential to restore lost information.Aim. To apply a texture appearance model for the segmentation of pulmonary nodules on computed tomography of the chest.Materials and methods. A novel model-based Texture Appearance Model (TAM) is proposed for precise and effective segmentation of all sorts of nodule regions. We taught the TAM for segmentation of a lung nodule in lung CT images using a combination of extracted texture characteristics from CT scans and Texture Representation of Image (TRI).Results. The results of applying the described TAM method to normal and noisy CT images are presented and compared to those obtained using the Region Growing and Active Contour algorithms, as well as the combination of Active Contour and Watershed algorithms. The TAM was tested in 85 nodules from a dataset, yielding an average dice similarity coefficient (DSC) of 84.75 percent.Conclusion. A novel method for segmenting nodules in the lung, which is capable of segmenting all forms of nodules with excellent accuracy, is proposed. This model-based technique, when used with the active loop algorithm, can enhance accuracy and decrease false positives by selecting the initial mask. The precision, dice, accuracy, and specificity of lung nodule segmentation on a normal CT scan are 85.5, 85, 96, and 98, which levels are superior to those produced by the Active Contour, Region Growing and the combination of Active Contour and Watershed algorithms.