Abstract:The ability to obtain appropriate parameters for an advanced pressurized water reactor (PWR) unit model is of great significance for power system analysis. The attributes of that ability include the following: nonlinear relationships, long transition time, intercoupled parameters and difficult obtainment from practical test, posed complexity and difficult parameter identification. In this paper, a model and a parameter identification method for the PWR primary loop system were investigated. A parameter identification process was proposed, using a particle swarm optimization (PSO) algorithm that is based on random perturbation (RP-PSO). The identification process included model variable initialization based on the differential equations of each sub-module and program setting method, parameter obtainment through sub-module identification in the Matlab/Simulink Software (Math Works Inc., Natick, MA, USA) as well as adaptation analysis for an integrated model. A lot of parameter identification work was carried out, the results of which verified the effectiveness of the method. It was found that the change of some parameters, like the fuel temperature and coolant temperature feedback coefficients, changed the model gain, of which the trajectory sensitivities were not zero. Thus, obtaining their appropriate values had significant effects on the simulation results. The trajectory sensitivities of some parameters in the core neutron dynamic module were interrelated, causing the parameters to be difficult to identify. The model parameter sensitivity could be different, which would be influenced by the model input conditions, reflecting the parameter identifiability difficulty degree for various input conditions.