Leaf wetness duration in a 'Niagara Rosada' vineyard and its relationships with downy mildew (Plasmopara viticola) occurrence Nowadays, the 'Niagara Rosada' grapevine is the most cultivated table grape variety in the State of São Paulo, Brazil. However, yield and production cost of this grapevine have been affected by fungal diseases, mainly downy mildew, caused by Plasmopara viticola fungus. For controlling this disease, producers have been applied an excessive number of sprays with fungicides. Among the meteorological variables that influence the occurrence of fungal plant diseases, leaf wetness duration (LWD) is one of the most important. The wetness presence on plant surface provides the water required by the phatogens to germinate and to infect leaf tissues. Aiming to subsidize the plant disease warning systems, which has as purpose to rationalize the use of fungicides in the vineyards, the objectives of the present study were: to determine the canopy position of the 'Niagara Rosada' table grape with longer LWD and its correlation with measured standard LWD over turfgrass; to estimate LWD over turfgrass considering different models with data from a standard weather station, and to evaluate the correlation between estimated LWD over turfgrass and LWD measured in the vineyard; and to correlate downy mildew occurrence in the vineyard, without chemical control, with measured LWD at the vineyard (canopy position with longer LWD), with estimated LWD in standard condition over turfgrass for the best model, and with other meteorological variables. LWD was measured in standard condition over turfgrass and in four different canopy positions of the vineyard: at the top of the plants, with sensors facing southwest and northeast (Top-SW and Top-NE), and at the grape bunches height, with sensors facing southwest and northeast (Bottom-SW and Bottom-NE). The downy mildew epidemiology during the grapevine cycle was evaluated without chemical control, using scores ranging from 0 to 4, with nine severity levels, for leaves and bunches of grapevine. When the spatial variability of LWD was studied, no significant difference was observed between the top (1.6 m) and the bottom (1.0 m) of the canopy and also between the southwest and northeast face of the plants. The analysis of the relationship between standard LWD over turfgrass and crop LWD in different positions of the grape canopy showed a define correlation (R 2 = 0.88). Among the LWD estimative methods, CART was the one with the best performance to estimate LWD over turfgrass. The results from this model also presented a good correlation with measured LWD inside the vineyard, showing that LWD can be estimated for this crop with data from a nearby standard weather station. For the downy mildew modeling, LWD also present the best correlations with disease severity in the 'Niagara Rosada' vineyard, showing the great importance of this variable for fungal diseases occurrence in this crop.