Time-domain Brillouin scattering is an all-optical experimental technique based on ultrafast lasers applied for generation and detection of coherent acoustic pulses on time durations of picoseconds and length scales of nanometers. In transparent materials scattering of the probe laser beam by the coherent phonons permits imaging of sample inhomogeneity. The transient optical reflectivity of the sample recorded by the probe beam as the acoustic nanopulse propagates in space contains information on the acoustical, optical, and acousto-optical parameters of the material under study. The experimental method is based on a heterodyning where weak light pulses scattered by the coherent acoustic phonons interfere at the photodetector with probe light pulses of significantly higher amplitude reflected from various interfaces of the sample. The time-domain Brillouin scattering imaging is based on Brillouin scattering and has the potential to provide all the information that researchers in material science, physics, chemistry, biology etc., get with classic frequency-domain Brillouin scattering of light. It can be viewed as a replacement for Brillouin scattering and Brillouin microscopy in all investigations where nanoscale spatial resolution is either required or advantageous. Here we review applications of time-domain Brillouin scattering for imaging of nanoporous films, ion-implanted semiconductors and dielectrics, texture in polycrystalline materials and inside vegetable and animal cells, and for monitoring the transformation of 2nanosound caused by nonlinearity and focusing. We also discuss the perspectives and the challenges for the future.I.