Fuels should behave appropriately in all sections of the engine system: the engine, fuel delivery system, and tank. Fuel quality can be linked to the following three crucial areas: performance, fitness for current use, and stability. Classical methods of diesel fuel examination mostly rely on the absolute value measurement of one specific parameter while stabilizing outside conditions. In contrast, multiparametric methods depend on simultaneously measuring a set of parameters. Therefore, multiparametric methods open the possibility of intriguing new examinations and classifications of diesel fuel quality while raising specific issues relating to the instrumentation and construction of sensing devices. This paper presents a review, based on the published literature and the authors’ research, of the current state-of-the-art multiparametric methods for rapid diesel fuel quality classification and related instrumentation, systematizing the various types of methods from the point of view of the principles of their operation. The main conclusion is that different measuring procedures use similar methods of data processing. Moreover, the heavy, costly, and complex devices that enable standard examinations can be converted to simpler devices in the future, whose cost of use is significantly lower. However, to achieve this, progress in electronic devices is required.