Abstract. The proliferation and migration of Schwann cells (SCs) are key events in the process of peripheral nerve repair. This is required to promote the growth of SCs and is a challenge during the treatment of peripheral nerve injury. Baicalin is a natural herb-derived flavonoid compound, which has been reported to possess neuroprotective effects on rats with permanent brain ischemia and neuronal differentiation of neural stem cells. The association of baicalin with neuroprotection leads to the suggestion that baicalin may exert effects on the growth of SCs. In the present study, the effects of baicalin on SCs of RSC96 were investigated. RSC96 SCs were treated with various concentrations of baicalin (0, 5, 10 or 20 µM) for 2, 4 and 6 days. Cell attachment, viability and gene expression were monitored via the MTT assay and reverse transcription-quantitative polymerase chain reaction. The gene expression levels of several neurotrophic factors, such as glial cell-derived neurotrophic factor, brain-derived neurotrophic factor and ciliary neurotrophic factor, which are considered important factors in the process of never cell regeneration, were detected. The results indicated that baicalin was able to promote the viability of RSC96 SCs in a dose-dependent manner and the concentration of 20 µM of baicalin exhibited the greatest cell viability and gene expression of the studied neurotrophic factors. The present findings suggested that baicalin likely affects SCs metabolism, through modulating the expression of neurotrophic factors. To conclude, the present study indicates that baicalin may be potential therapeutic agent for treating peripheral nerve regeneration.