SummaryFOXO transcription factors induce apoptosis and regulate cellular production of reactive oxygen species (ROS). To identify the sequence of molecular events underlying FOXO3 (FKHRL1)-induced apoptosis, we studied the regulation and function of FOXO3 by expressing an ECFP-tagged FOXO3 or a 4OH-tamoxifen (4OHT)-inducible FOXO3-ERtm fusion protein in SH-EP and STA-NB15 neuronal cells. After knockdown of FOXO3 or expression of a dominant-negative FOXO3 mutant we observed that etoposide-and doxorubicin-induced elevation of cellular ROS depends on FOXO3 activation and induction of its transcriptional target BCL2L11 (Bim). Activation of FOXO3 on its own induced two sequential ROS waves as measured by reduced MitoTrackerRed in live cell microscopy. Induction of Bim by FOXO3 is essential for this phenomenon because Bim knockdown or ectopic expression of BCL2L1 (BclxL) prevented FOXO3-mediated overproduction of ROS and apoptosis. Tetracycline-controlled expression of Bim impaired mitochondrial respiration and caused ROS production, suggesting that FOXO3 induces uncoupling of mitochondrial respiration through Bim. FOXO3 also activated a ROS rescue pathway by inducing the peroxiredoxin SESN3 (Sestrin3), which is responsible for the biphasic ROS accumulation. Knockdown of SESN3 caused an increase of FOXO3-induced ROS and accelerated apoptosis. The combined data clearly demonstrate that FOXO3 activates overproduction of ROS as a consequence of Bim-dependent impairment of mitochondrial respiration in neuronal cells, which leads to apoptosis.
Plant-derived lignans caused cell loss by apoptosis in colorectal adenoma and carcinoma cells. Nordihydroguaiaretic acid (NDGA), commonly used for the inhibition of lipoxygenase isoenzymes, showed the strongest growth inhibition with an IC50 of 1.9+/-0.5 microg followed by epiashantin (IC50=9.8+/-4.5 microM) and arctigenin (IC50=16.5+/-8.5 microM). The lignans caused a time- and dose-dependent loss of mitochondrial membrane potential (MMP), down regulation of the anti-apoptotic protein bcl(xl) and an increase of the apoptotic index. The time interval until loss of MMP and down modulation of bcl(xl) became evident correlated with the efficiency of growth inhibition by NDGA, epiashantin and yangambin. Bcl2 and caspase 3 were not involved. NDGA also induced a shift of the culture population to the G2/M phase of the cell cycle. With respect to these results, naturally occurring lignans could be useful in the therapy and chemoprevention of colorectal tumors.
SummaryGTPases function as intracellular, bimolecular switches by adopting different conformational states in response to binding GDP or GTP. Their activation is mediated through cell-surface receptors. Rho GTPases act on several downstream effectors involved in cellular morphogenesis, cell polarity, migration and cell division. In neurons, Rho GTPases regulate various features of dendritic and axonal outgrowth during development and regeneration mainly through their effects on the cytoskeleton. This review summarizes the main functions of Rho, Rac and Cdc42 GTPases as key regulators of morphological neuroplasticity under normal and pathological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.