Abstract. In August 2018, the first Doppler Wind Lidar, developed by the European Space Agency (ESA), was launched on board the Aeolus satellite into space. Providing atmospheric wind profiles on a global basis, the Earth Explorer mission is expected to demonstrate improvements in the quality of numerical weather prediction (NWP). For the use of Aeolus observations in NWP data assimilation, a detailed characterization of the quality and the minimization of systematic errors is crucial. This study performs a statistical validation of Aeolus observations, using collocated radiosonde measurements and NWP forecast equivalents from two different global models, the ICOsahedral Nonhydrostatic model (ICON) of Deutscher Wetterdienst (DWD) and the European Centre for Medium-Range Weather Forecast (ECMWF) Integrated Forecast System (IFS) model, as reference data. For the time period from the satellite's launch to the end of December 2019, comparisons for the northern hemisphere (23.5–65° N) show strong variations of the Aeolus winds bias and differences between the ascending and descending orbit phase. The mean absolute bias for the selected validation area is found to be in the range of 1.8–2.3 m s−1 (Rayleigh) and 1.3–1.9 m s−1 (Mie), showing good agreement between the independent reference data sets. Due to lower representativeness, the random differences are larger for the validation using radiosonde observations compared to the model equivalent statistics. To achieve an estimate for the Aeolus instrumental error, the representativeness errors for the comparisons are determined, besides the estimation of the model and radiosonde observational error. The resulting Aeolus errors estimates are in the range of 4.1–4.4 m s−1 (Rayleigh) and 1.9–3.0 m s−1 (Mie). Investigations of the Rayleigh wind bias on a global scale show that in addition to the satellite flight direction and seasonal differences, the systematic differences depend on latitude. A latitude based bias correction approach is able to reduce the bias, but a residual bias of 0.4–0.6 m s−1 with a temporal trend remains. Taking additional longitudinal differences into account, the bias can be reduced further by almost 50 %. Longitudinal variations are suggested to be linked to land-sea distribution and tropical convection that influences the thermal emission of the earth. Since 20 April 2020 a bias correction scheme has been applied operationally in the L2B processor, developed by the Aeolus Data Innovation and Science Cluster (DISC).