Biogenic amines are low molecular weight organic nitrogen compounds. They are formed by the decarboxylation of amino acids or by amination and transamination of aldehydes and ketones during normal metabolic processes in living cells and therefore are ubiquitous in animals, plants, microorganisms, and humans. In food and beverages, they are formed by the enzymes of raw materials or are generated by microbial decarboxylation of amino acids. The structure of a biogenic amine can be aromatic and heterocyclic amines (histamine, tryptamine, tyramine, phenylethylamine, and serotonin); aliphatic di-, tri-, and polyamines (putrescine, cadaverine, spermine, spermidine, and agmatine); and aliphatic volatile amines (ethylamine, methylamine, isopentylamine, and ethanolamine). Many of them possess a strong pharmacologic effect, and others are important as precursors of hormones and components of coenzymes. The biogenic amine intoxication leads to toxicological risks and health hazards that trigger psychoactive, vasoactive, and hypertensive effects resulting from consumption of high amounts of biogenic amines in foods. The toxicological effects of biogenic amines increase when the mono-and diaminoxidase enzymes are deficient or drugs that inhibit these enzymes (pain reliever, stress, and depression drugs) are used. In this chapter, biosynthesis of biogenic amines, their toxic effects as well as their physiological functions, and their effect on health will be described.