The in-situ, non-contact, and non-destructive measurement of the physicochemical properties such as the polarity of thin (nm to µm), hydrophilic polymer films is desirable in many areas of polymer science. Polarity is a complex factor and encompasses a range of noncovalent interactions including dipolarity/polarizability and hydrogen bonding. A polarity measurement method based on fluorescence would be ideal, but the key challenge is to identify suitable probes which can accurately measure specific polarity related parameters. In this manuscript we assess a variety of fluorophores for measuring the polarity of a series of relatively hydrophilic, thermoresponsive N-isopropylacrylamide/N-tert-butylacrylamide (NIPAM/NtBA) copolymers. The emission properties of both pyrene and 3-Hydroxyflavone (3-HF) based fluorophores were measured in dry polymer films. In the case of pyrene, a relatively weak, linear relationship between polymer composition and the ratio of the first to the third vibronic band of the emission spectrum (I 1 /I 3 ) is observed, but pyrene emission is very sensitive to temperature and thus not suitable for robust polarity measurements. The 3-