This paper describes a heterogeneous DNA-hybridization assay based on electrochemiluminescence (ECL) detection on gold electrodes. Short, 15-mer oligonucleotides were conjugated with a synthesized electrochemiluminescent label, bis(2,2 -bipyridine)-5-isothiocyanato-1,10-phenanthroline ruthenium(II) at the amino-modified 5 -end. Gold electrodes were derivatized with 15-mer oligonucleotide probes via 1-(3-(dimethylamino)propyl)-3-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) cross-linking reaction and hybridized with Ru-labeled strands. Two types of self-assembled-monolayers have been utilized for the immobilization reaction, 3-mercaptopropanoic acid (3-MHA) and 16-mercaptohexadecanoic acid (16-MHA). Longer thiols were more stable at high electrode potentials needed for the ECL generation. The system was sensitive down to 1 fmol of labeled complementary strand, detected in 30 L of buffer. Mismatch discrimination was achieved both passively by washing and actively by application of negative electrode potential on electrodes prior to detection, but active denaturing lead to better results. Two base-pair mismatches were discriminated at room temperature.