2021
DOI: 10.46793/kgjmat2101.139n
|View full text |Cite
|
Sign up to set email alerts
|

The Reciprocal Complementary Wiener Number of Graph Operations

Abstract: The reciprocal complementary Wiener number of a connected graph G is defined as ∑ {x,y}⊆V (G) 1 D+1-−-dG(x,y), where D is the diameter of G and dG(x,y) is the distance between vertices x and y. In this work, we study the reciprocal complementary Wiener number of various graph operations such as join, Cartesian product, composition, strong product, disjunction, symmetric difference, corona product, splice and link of graphs.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?