BACKGROUND: S-Phase Kinase-Associated Protein 2 (SKP2) is essential in modulating metabolism processes, cell proliferation, and carcinogenesis DUE to its capacity to ubiquitinate and degrade various tumor-suppressive substrates. However, the actual biological and mechanism significance of SKP2 in the development of tumors and as a possible therapeutic target remains to be completely understood.
AIM: This study aimed to explore the potential roles of the SKP2 gene in the oncologic pathogenesis of various cancers through an in-depth pan-cancer analysis including gene expression assessment, survival analysis, genetic alteration, and enrichment analysis.
METHODS: Public databases including the Cancer Genome Atlas database, Genotype-Tissue Expression Project database, cBioPortal database, Gene Expression Profiling Interactive Analysis 2 database, Tumor Immune Estimation Resource version 2.0 database, and STRING database were used to detect the SKP2 expression, molecular mechanism, and its association with the prognosis across pan-cancer.
RESULTS: SKP2 was significantly highly expressed in most types of cancers and was substantially correlated to the poor survival of patients with specific cancers based on the log-rank test. SKP2 had the highest frequency of alteration in lung cancer and amplification was the most common genetic alteration type. Finally, SKP2-related genes were identified and enrichment analyses were conducted.
CONCLUSION: This study presented the first demonstration of the pan-cancer landscape of abnormal SKP2 expression, it could potentially serve as a predictive indicator and prospective therapeutic target.