To investigate the role of renal sympathetic nerves in the fetal response to hypervolemia, studies were carried out in conscious, chronically instrumented fetal sheep aged 137-142 days of gestation. Bilateral renal denervation (n = 9) or sham surgery (n = 8) was carried out under halothane anesthesia 3-6 days before experiments. Bilateral renal denervation did not alter basal fetal renal hemodynamics, glomerular filtration rate (GFR), or Na+ excretion. Volume expansion with 6% Dextran 70 (18 ml/kg) was associated with a fall in fetal hematocrit, a sustained increase in mean arterial blood pressure, and a sustained diuresis and natriuresis. There was no significant change in GFR during fetal hypervolemia from control levels of 4.51 +/- 0.74 ml/min (intact) and 4.43 +/- 0.43 ml/min (denervated). Atrial natriuretic factor increased from 144 +/- 34 to 464 +/- 134 pg/ml, and plasma renin activity decreased from 5.15 +/- 1.7 to 3.04 +/- 1.0 ng.ml-1.h-1 in intact animals, within 30 min of completion of the dextran infusion. Similar changes occurred in denervated fetuses. Plasma aldosterone levels remained constant in intact and denervated fetuses during hypervolemia at control levels of 40.8 +/- 5.4 and 59.3 +/- 8.4 pg/ml, respectively. These findings suggest that renal sympathetic nerves do not influence basal renal hemodynamics or function and do not appear to play an important role in the natriuretic response to volume expansion during fetal life. This can be explained by a low tonic renal nerve activity before birth.