A centromere is a chromosomal region on which several proteins assemble to form the kinetochore. The centromere-kinetochore complex helps in the attachment of chromosomes to spindle microtubules to mediate segregation of chromosomes to daughter cells during mitosis and meiosis. In several budding yeast species, the centromere forms in a DNA sequence-dependent manner, whereas in most other fungi, factors other than the DNA sequence also determine the centromere location, as centromeres were able to form on nonnative sequences (neocentromeres) when native centromeres were deleted in engineered strains. Thus, in the absence of a common DNA sequence, the cues that have facilitated centromere formation on a specific DNA sequence for millions of years remain a mystery. Kinetochore formation is facilitated by binding of a centromere-specific histone protein member of the centromeric protein A (CENP-A) family that replaces a canonical histone H3 to form a specialized centromeric chromatin structure. However, the process of kinetochore formation on the rapidly evolving and seemingly diverse centromere DNAs in different fungal species is largely unknown. More interestingly, studies in various yeasts suggest that the factors required for de novo centromere formation (establishment) may be different from those required for maintenance (propagation) of an already established centromere. Apart from the DNA sequence and CENP-A, many other factors, such as posttranslational modification (PTM) of histones at centric and pericentric chromatin, RNA interference, and DNA methylation, are also involved in centromere formation, albeit in a species-specific manner. In this review, we discuss how several genetic and epigenetic factors influence the evolution of structure and function of centromeres in fungal species.A complete understanding of the complexities of the process of cellular differentiation requires a thorough analysis of the molecular events occurring during eukaryotic cell division. As an important part of this process, a cell has to ensure accurate segregation of duplicated chromosomes into its progeny cells. In eukaryotes, specific DNA sequences, and the factors that bind to them immediately after replication, partly dictate the state of chromatin. Apart from the genetic factors, many epigenetic phenomena also contribute to formation of specialized chromatin required for specific functions. One such specialized chromatin domain, the centromere (CEN)-kinetochore complex, plays a crucial role in high-fidelity chromosome segregation and has great implications for human health. A consequence of improper chromosome segregation is the abnormal chromosome numbers associated with most human cancers. For example, in human colorectal cancers, almost 85% of cells are aneuploid, with 60 to 90 chromosomes (128).The high-fidelity chromosome segregation that occurs during mitosis and meiosis requires a functional centromere, defined as the primary constriction on a chromosome. The centromere is a region where spindle fibers attach to ...