This paper reports the results of studying the influence of surfactants (SAS) on the wetting of titanium dioxide in alkyd paint and varnish materials (PVM), based on pentaphthalic (PPh) and alkyd-urethane (AU) film-forming substances. Edge wetting angle (θ°) and adhesion work (Wa) were used as the criteria for assessing the wettability of titanium dioxide. Three additives were used as SAS: the original product AS-1, obtained from waste of oil refining (with low cost), and industrial additives: "Telaz" and polyethylene polyamine (PEPA). All the studied additives in PPh and AU PVM improve the wetting of titanium dioxide. At the 30 % content of AS film-forming substance in the composition, the maximum decrease in θ° for AS-1 is 4.5°, for PEPA and Telaz it is 4°. For pentaphthalic composition under similar conditions, a decrease in edge wetting angle for AS-1 is 10 °, for Telaz 8.6°, and for PEPA 5.9°. According to the relative change in edge wetting angle for both systems, the maximum decrease in θ° is about 10 %. The introduction of SAS into the composition of AU ambiguously affects the adhesion work, for PPh, the introduction of SAS causes a decrease in adhesion work (Wa). AS-1 is the SAS that minimally reduces adhesion work. The compositions of the PVM by the method of probabilistic-deterministic planning, which ensures maximum wetting of titanium dioxide with film-forming solutions, were analyzed. The equations for calculating the edge angle of wetting of titanium dioxide depending on the content of solvent and the SAS in the PVM were derived. The effectiveness of the AS-1 product as a wetting additive for alkyd paints and varnishes was proven. The wetting ability of the original SAS – AS-1 is close to industrial additives PEPA and Telaz.