Information is provided about the stability of polysilicates solutions, obtained by mixing liquid glass and silica sol. It was found, that at increases the amount of silicic acid sol added, the pH of the solutions decreases with an unchanged alkali concentration. Information on the structure of polysilicate solutions are given. It has been found, that addition of the sol (increasing the silicate module) contribute to prolonging fraction of high-polymer fractions of silicic anion. The dependence of the silica content of the monomeric form of α-SiO2in the early stages of interaction between the sol and liquid glass is extreme. The maximum content of α-SiO2 depends on the type of liquid glass and the amount of sol. It is shown, that films based on polysilicates solutions, are characterized by faster curing. The manifestation of the scale factor for coatings based on polysilicate solutions was revealed.
The results of the study provide information on the resistance of coatings based on the solof silicate paint in the process of freezing and thawing. It was found, that coatings based on sol silicatepaints are characterized by a higher resistance compared of silicate coatings. It is shown, that thecoatings withstood 50 cycles of alternate freezing and thawing. The surface energy of the coatingswas calculated using the critical surface tension of the fluid at the interface with the solid. Thedispersion contribution in the intermolecular interaction between the particles of the coatings wasestimated. The values of the surface tension of the coatings and the values of the dispersioncomponent of the surface energy of the coatings — the complex Hamaker constant — are calculated.It was revealed, that after testing a decrease in the values of the Hamaker constant is observed. It wasestablished, that after testing for frost resistance, the values of the Hamaker constant for coatingsbased on sol of silicate paint are higher compared to coatings based on silicate paint.
It is proposed to use polysilicate solutions obtained by mixing liquid glass and silicic acid sol as a binder at silicate paints manufacturing. Information is provided on the mechanism for increasing the operational properties of coatings based on silicate paint sol. It has been revealed that the polysilicate solutions form films characterized by higher tensile strength due to the increase of the share of silicic anions’ high-polymer fractions in the structure of polysilicate binder in comparison with liquid glass. The results of studying the interphase interaction between the pigment and the film-forming agent are presented. It is shown that potassium polysilicate solutions form a smaller contact angle on the surface of the pigment (filler) and are characterized with greater work of wetting and adhesion to the filler (pigment).
Information is given on the strength of the coatings of cement concrete for the exterior walls of buildings. It was found that the strength of the coating depends on the quality of its appearance. A strength model is proposed depending on the surface roughness of the coating. The influence of the scale factor on the change in the strength of coatings is established. To assess the long-term strength of the coatings, we studied the temperature-time dependence of strength. The values of the activation energy of the destruction process of some coatings are experimentally determined. The dependence of the long-term strength of the coatings on tensions is given. The kinetics of changes in the short-term strength of coatings during aging is considered from the perspective of the kinetic concept of the strength of solids. The condition for coating cracking is obtained. Taking into account the influence of the scale factor and the conditions of brittle fracture of coatings, a method for choosing the optimal coating thickness is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.