Tropical cyclones (TCs) can affect the thermal structure in the upper ocean by mixing. In turn, upper-ocean thermal structure also affects the evolution of TCs. Here based on satellite data, in situ temperature and salinity observations and the best-track data of the U.S. Joint Typhoon Warning Center, combined with an ocean mixed layer model, the role of the pre-existing summer upwelling of the northern South China Sea (NSCS) in TCs self-induced sea surface cooling was explored. The modeling results showed that for a given atmospheric thermodynamic condition, TCs self-induced sea surface cooling is quite different when they pass over the regions with pre-existing upwelling and without upwelling. The amplitude of TCs self-induced cooling is larger by more than 50% in the region with pre-existing upwelling than that without. For example, for a slow-moving typhoon with translation speed of 4 m/s and wind speed of 45 m/s, TC self-induced surface cooling is 2.5˚C when they pass over the upwelling region, but only 1.5˚C when they pass over the region without upwelling. The results suggest that upwelling of the NSCS could amplify TCs self-induced cooling and play a negative role in TCs intensification before they made landfall in Southern China.