Orexins are hypothalamic peptides that play an important role in maintaining wakefulness in mammals. Permanent deficit in orexinergic function is a pathophysiological hallmark of rodent, canine and human narcolepsy. Here we report that in rats, dogs and humans, somnolence is induced by pharmacological blockade of both orexin OX(1) and OX(2) receptors. When administered orally during the active period of the circadian cycle, a dual antagonist increased, in rats, electrophysiological indices of both non-REM and, particularly, REM sleep, in contrast to GABA(A) receptor modulators; in dogs, it caused somnolence and increased surrogate markers of REM sleep; and in humans, it caused subjective and objective electrophysiological signs of sleep. No signs of cataplexy were observed, in contrast to the rodent, dog or human narcolepsy syndromes. These results open new perspectives for investigating the role of endogenous orexins in sleep-wake regulation.
Macitentan, also called Actelion-1 or -6-(2-(5-bromopyrimidin-2-yloxy)ethoxy)-pyrimidin-4-yl]-NЈ-propylaminosulfonamide], is a new dual ET A / ET B endothelin (ET) receptor antagonist designed for tissue targeting. Selection of macitentan was based on inhibitory potency on both ET receptors and optimization of physicochemical properties to achieve high affinity for lipophilic milieu. In vivo, macitentan is metabolized into a major and pharmacologically active metabolite, ACT-132577. Macitentan and its metabolite antagonized the specific binding of ET-1 on membranes of cells overexpressing ET A and ET B receptors and blunted ET-1-induced calcium mobilization in various natural cell lines, with inhibitory constants within the nanomolar range. In functional assays, macitentan and ACT-132577 inhibited ET-1-induced contractions in isolated endothelium-denuded rat aorta (ET A receptors) and sarafotoxin S6c-induced contractions in isolated rat trachea (ET B receptors). In rats with pulmonary hypertension, macitentan prevented both the increase of pulmonary pressure and the right ventricle hypertrophy, and it markedly improved survival. In diabetic rats, chronic administration of macitentan decreased blood pressure and proteinuria and prevented end-organ damage (renal vascular hypertrophy and structural injury). In conclusion, macitentan, by its tissuetargeting properties and dual antagonism of ET receptors, protects against end-organ damage in diabetes and improves survival in pulmonary hypertensive rats. This profile makes macitentan a new agent to treat cardiovascular disorders associated with chronic tissue ET system activation.
Urotensin-II (U-II) is a cyclic peptide now described as the most potent vasoconstrictor known. U-II binds to a specific G protein-coupled receptor, formerly the orphan receptor GPR14, now renamed urotensin receptor (UT receptor), and present in mammalian species. Palosuran (ACT-058362; 1-[2-(4-benzyl-4-hydroxy-piperidin-1-yl)-ethyl]-3-(2-methyl-quinolin-4-yl)-urea sulfate salt) is a new potent and specific antagonist of the human UT receptor. ACT-058362 antagonizes the specific binding of 125 Ilabeled U-II on natural and recombinant cells carrying the human UT receptor with a high affinity in the low nanomolar range and a competitive mode of antagonism, revealed only with prolonged incubation times. ACT-058362 also inhibits U-II-induced calcium mobilization and mitogen-activated protein kinase phosphorylation. The binding inhibitory potency of ACT-058362 is more than 100-fold less on the rat than on the human UT receptor, which is reflected in a pDЈ 2 value of 5.2 for inhibiting contraction of isolated rat aortic rings induced by U-II. In functional assays of short incubation times, ACT-058362 behaves as an apparent noncompetitive inhibitor. In vivo, intravenous ACT-058362 prevents the no-reflow phenomenon, which follows renal artery clamping in rats, without decreasing blood pressure and prevents the subsequent development of acute renal failure and the histological consequences of ischemia. In conclusion, the in vivo efficacy of the specific UT receptor antagonist ACT-058362 reveals a role of endogenous U-II in renal ischemia. As a selective renal vasodilator, ACT-058362 may be effective in other renal diseases.
Urotensin-II (U-II) is a cyclic peptide that acts through a specific G-protein-coupled receptor, UT receptor. Urotensin-II and UT receptors have been described in pancreas and kidney, but their function is not well understood. We studied the effects of chronic treatment of diabetic rats with the orally active selective U-II receptor antagonist palosuran. Streptozotocin treatment causes pancreatic -cell destruction and leads to the development of hyperglycemia, dyslipidemia, and renal dysfunction. Long-term treatment of streptozotocin-induced diabetic rats with palosuran improved survival, increased insulin, and slowed the increase in glycemia, glycosylated hemoglobin, and serum lipids. Furthermore, palosuran increased renal blood flow and delayed the development of proteinuria and renal damage. The U-II system is unique in that it plays a role both in insulin secretion and in the renal complications of diabetes. Urotensin receptor antagonism might be a new therapeutic approach for the treatment of diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.