Resistance afforded by the sickle-cell trait against severe malaria has led to high frequencies of the sickle-cell mutation [HBB; c.20 T > A, p.Glu6Val; OMIM: 141900 (HBB-βS)] in most parts of Africa. High-coverage sequencing and genotype data have now confirmed the single African origin of the sickle-cell gene variant [HBB; c.20 T > A, p.Glu6Val; OMIM: 141900 (HBB-βS)]. Nevertheless, the classical HBB-like genes cluster haplotypes remain a rich source of HBB-βS evolutionary information. The overlapping distribution of HBB-βS and other disease-associated variants means that their evolutionary genetics must be investigated concurrently. In this review: 1) we explore the evolutionary history of HBB-βS and its implications in understanding human migration within and out of Africa: e.g. HBB haplotypes and recent migration paths of the Bantu expansion, occurrence of ~ 7% of the Senegal haplotype in Angola reflecting changes in population/SCD dynamics, and existence of all five classical HBB haplotype in Cameroon and Egypt suggesting a much longer presence of HBB-βS in these regions; 2) we discuss the time estimates of the emergence of HBB-βS in Africa; and finally, 3) we discuss implications for genetic medicine in understanding complex epistatic interactions between HBB-βS and other gene variants selected under environmental pressure in Africa e.g. variants in HBB, HBA, G6PD, APOL, APOE, OSBPL10, RXRA.