The S100A1 gene is a promising target enhancing contractility and survival post myocardial infarction (MI). Achieving sufficient gene delivery within safety limits is a major translational problem. This proof of concept study evaluates viral-mediated S100A1 overexpression featuring a novel liquid jet delivery (LJ) method. 24 rats after successful MI were divided into 3 groups (n=8 ea.): saline control (SA), ssAAV9.S100A1 (SS) delivery, and scAAV9.S100A1 (SC) delivery (both 1.2×1011 viral particles). For each post MI rat, the LJ device fired three separate 100 μL injections into the myocardium. Following 10 weeks, all rats were evaluated with echocardiography, quantitative polymerase chain reaction (qPCR), and overall S100A1 and CD38 immune protein. At 10 weeks all groups demonstrated a functional decline from baseline, but the S100A1 therapy groups displayed preserved LV function with significantly higher ejection fraction %; SS group [60±3] and SC group [57±4] versus saline [46±3], p<0.05. Heart qPCR testing showed robust S100A1 in the SS [10,147±3993] and SC [35,155±5808] copies per 100 ng DNA, while off target liver detection was lower in both SS [40±40], SC [34,841±3164] respectively. Cardiac S100A1 protein expression was [4.3±0.2] and [6.1±0.3] fold higher than controls in the SS and SC groups respectively, p<0.05.