Background: Studies on the impact of the skin microbiota on human health have been gaining more attention. Bacteria are associated with various diseases, although certain strains of bacteria, which are known as probiotics, are considered beneficial. Mixtures of several bacteria (bacterial cocktail) isolated from targeted organs have shown promising modulatory activities for use in skin therapeutics. The objectives of this study were to determine and identify the microbial communities on the skin that can potentially be used as probiotics, as determined by bacterial isolation and cultivation, followed by next-generation sequencing (NGS). Results: Samples were collected by swabbing on forehead and cheek skin. Genomic DNA from bacterial swab samples were directly extracted to be further processed into NGS. Cultivation of skin bacteria was carried out in subsequent medium. Thus, around twenty bacterial isolates with different characteristics were selected and identified by both culture-based method and 16sRNA sequencing. We found that Actinobacteria and Firmicutes are the most abundant phylum present on the skin as presented by NGS data, which constitute to 67% and 28.59% of the whole bacterial population, consecutively. However, Staphylococcus hominis, Staphylococcus warneri, and Micrococcus luteus (AN MK968325.1; AN MK968315.1; and MK968318.1 respectively) were able to be obtained in the samples of cultivable, and could be potentially developed as probiotics in skin microbiome therapeutic as well as for postbiotic formulation. Conclusion: Skin microbiome is considered to provide several probiotics for skin therapeutic. However, some opportunistic pathogens were discovered in this study population. Thus, the promising formula of bacterial cocktail for skin microbiome therapeutic must be thoroughly elucidated to avoid unwanted species. Our study is the first human skin microbiome profile of Indonesia resulted from a Next Generation Sequencing as an effort to show a representative of tropical country profile.