Udder health of dairy cows is related to their productivity and welfare. The period from dry-off to calving and early lactation is crucial. Ultrasonography is a useful and practical tool for the examination of the mammary parenchyma and blood flow. This observational study investigated the relationship between udder echotexture features, blood flow volume (BFVol) in the milk vein, milk somatic cell count (SCC) and daily milk yield (DMY) from late lactation, throughout the dry period and consecutive early lactation. Seventeen repeated measurements were performed on twenty-one Holstein cows. The udder parenchyma was examined with B-mode ultrasonography. Udder echotexture was studied using 15 features: Numerical Pixel Value (NPV), Pixel Standard Deviation (PSD), Skewness, Excess, Contrast, Homogeneity, Correlation, Entropy, Run Percentage, Long-Run Emphasis, Grey Value Distribution, Runlength Distribution, Gradient Mean Value, Gradient Variance and Percentage of Non-zero Gradients. Blood flow in the milk vein was examined with spectral Doppler. Linear mixed-effects models were employed to investigate relationships between BFVol, udder echotexture features, SCC and DMY throughout the study period. Our models showed that a 1 kg increase in DMY was associated with a significant increase of 0.25 L/min in the expected BFVol and that a 1,000,000-cells/mL increase in SCC was associated with a significant BFVol decrease of 0.49 L/min, keeping all other variables constant. Multivariable models showed significant associations between DMY and NPV, between PSD and Long-Run Emphasis, and between SCC and NPV, PSD, Gradient Mean Value, Homogeneity, Gradient Variance and Entropy. In conclusion, udder echotexture and BFVol in the milk vein are related to SCC and milk yield. Ultrasonography can be used for the comprehensive assessment of udder health in support of precision dairy farming.