Objectives: The orexigenic hormone ghrelin circulates mainly in two forms, acylated and desacyl ghrelin. We evaluated the impact of obesity and obesity-associated type 2 diabetes (T2D) on ghrelin forms and the potential role of acylated and desacyl ghrelin in the control of adipogenesis in humans. Methods: Plasma concentrations of the different ghrelin forms were measured in 80 subjects. The expression of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) was analyzed in omental adipose tissue using western blot and immunohistochemistry, and the effect of acylated ghrelin and desacyl ghrelin (0.1-1000 pmol l À1 ) on adipogenesis was determined in vitro in omental adipocytes. Results: Circulating concentrations of acylated ghrelin were increased, whereas desacyl ghrelin levels were decreased, in obesity and obesity-associated T2D. Body mass index, waist circumference, insulin and HOMA (homeostasis model assessment) index were positively correlated with acylated ghrelin levels. Obese individuals showed a lower protein expression of GHS-R in omental adipose tissue. In differentiating omental adipocytes, incubation with both acylated and desacyl ghrelin significantly increased PPARg (peroxisome proliferator-activated receptor g) and SREBP1 (sterol-regulatory element binding protein-1) mRNA levels, as well as several fat storage-related proteins, including acetyl-CoA carboxylase, fatty acid synthase, lipoprotein lipase and perilipin. Consequently, both the ghrelin forms stimulated intracytoplasmatic lipid accumulation. Conclusions: Both acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. Given the lipogenic effect of acylated ghrelin on visceral adipocytes, the herein-reported elevation of its circulating concentrations in obese individuals may play a role in excessive fat accumulation in obesity.