We previously demonstrated that intake of three eggs/d for 4 weeks increased plasma choline and decreased inflammation in subjects with metabolic syndrome (MetS). The purpose of the current study was to further explore the effects of phosphatidylcholine (PC) provided by eggs versus a choline bitartrate (CB) supplement on the gut microbiota, trimethylamine N-oxide (TMAO) formation, and plasma carotenoids lutein and zeaxanthin in MetS. This randomized, controlled crossover clinical trial included 23 subjects with MetS. Following a washout period of 2 weeks without consuming any choline-containing foods, subjects were randomly allocated to consume either three eggs/d or a CB supplement for 4 weeks (both diets had a choline equivalent of 400 mg/day). DNA was extracted from stool samples to sequence the 16S rRNA gene region for community analysis. Operational taxonomic units (OTUs) and the α-diversity of the community were determined using QIIME software. Plasma TMAO, methionine, betaine, and dimethylglycine (DMG) were quantified by stable isotope dilution liquid chromatography with tandem mass spectrometry. Plasma carotenoids, lutein, and zeaxanthin were measured using reversed-phase high-performance liquid chromatography. There were significant increases in plasma lutein and zeaxanthin after egg intake compared to the baseline or intake of CB supplement (p < 0.01). In contrast, TMAO was not different between treatments compared to the baseline (p > 0.05). Additionally, while diet intervention had no effects on microbiota diversity measures or relative taxa abundances, a correlation between bacterial biodiversity and HDL was observed. Following egg intake, the observed increases in plasma lutein and zeaxanthin may suggest additional protection against oxidative stress, a common condition in MetS.