OBJECTIVE: A number of recent studies suggest that leptin has effects on glucose metabolism and pancreatic hormone secretion. Therefore, the effect of leptin administration on circulating glucose, insulin and glucagon in fed and fasted mice was investigated. The potential contribution of the sympathetic nervous system to the effects of leptin was also examined. DESIGN: Recombinant human or murine leptin was administered intraperitoneally (300 mgamouse per 12 h over 24 h) to fed or fasted, normal or chemically sympathectomized NMRI mice. Blood samples were collected at baseline and after 24 h. MEASUREMENTS: Plasma concentrations of glucose, insulin and glucagon. RESULTS: In the fed state (n 24), leptin administration did not affect glucose, insulin or glucagon concentrations after 24 h. Fasting (n 24) reduced body weight by 2.2 AE AE 0.4 g, plasma glucose by 3.7 AE AE 0.4 mmolal, plasma insulin by 138 AE AE 35 pmolal, and plasma glucagon by 32 AE AE 7 pgaml. In fasted mice, human leptin (n 24) increased plasma glucose by 1.5 AE AE 0.2 mmolal (P 0.041), plasma insulin by 95 AE AE 22 pmolal (P 0.018), and plasma glucagon by 16 AE AE 3 pgaml (P 0.025), relative to saline-injected control animals. Murine leptin exerted similar stimulating effects on circulating glucose ( 1.0 AE AE 0.2 mmolal, P 0.046), insulin ( 58 AE AE 17 pmolal, P 0.038) and glucagon ( 24 AE AE 9 pgaml, P 0.018) as human leptin in fasted mice (n 12) with no signi®cant effect in fed mice (n 12). Human leptin did not affect circulating glucose, insulin or glucagon in fasted mice after chemical sympathectomy with 6-hydroxydopamine (40 mgakg iv 48 h prior to fasting; n 12). CONCLUSION: Leptin increases circulating glucose, insulin and glucagon in 24 h fasted mice by a mechanism requiring intact sympathetic nerves.