Aims/hypothesis In this study, we aimed to evaluate the therapeutic potential of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMP-activated protein kinase, for ameliorating high-fat diet (HFD)-induced pathophysiology in mice. We also aimed to determine whether the beneficial effects of AICAR were dependent on adiponectin. Furthermore, human adipose tissue was used to examine the effect of AICAR ex vivo. Methods Six-week-old male C57BL/6J wild-type and Adipoq −/− mice were fed a standard-fat diet (10% fat) or an HFD (60% fat) for 12 weeks and given vehicle or AICAR (500 μg/g) three times/week from weeks 4-12. Diet-induced pathophysiology was examined in mice after 11 weeks by IPGTT and after 12 weeks by flow cytometry and western blotting. Human adipose tissue biopsies from obese (BMI 35-50 kg/m 2 ) individuals were incubated with vehicle or AICAR (1 mmol/l) for 6 h at 37°C, after which inflammation was characterised by ELISA (TNF-α) and flow cytometry. Results AICAR attenuated adipose inflammation in mice fed an HFD, promoting an M1-to-M2 macrophage phenotype switch, while reducing infiltration of CD8 + T cells. AICAR treatment of mice fed an HFD partially restored glucose tolerance and attenuated hepatic steatosis and kidney disease, as evidenced by reduced albuminuria (p < 0.05), urinary H 2 O 2 (p < 0.05) and renal superoxide levels (p < 0.01) in both wild-type and Adipoq −/− mice. AICAR-mediated protection occurred independently of adiponectin, as similar protection was observed in wild-type and Adipoq −/− mice. In addition, AICAR promoted an M1-to-M2 macrophage phenotype switch and reduced TNF-α production in tissue explants from obese human patients. Conclusions/interpretation AICAR may promote metabolic health and protect against obesity-induced systemic diseases Catherine Godson and Kumar Sharma are joint senior authors.Electronic supplementary material The online version of this article