MER-type zeolite is an interesting microporous material that has been widely used in catalysis and separation. By carefully controlling the synthesis parameters, a procedure to synthesize K-MER zeolite crystals with various morphologies has been developed. The silica, water and mineralizer content in the synthesis gel, as well as crystallization time and temperature, have a profound impact on the crystallization kinetics, resulting in zeolite solids with various degrees of crystallinity, crystal sizes and shapes. K-MER zeolite crystals with nanorod, bullet-like, prismatic and wheatsheaf-like morphologies have been successfully obtained. The catalytic performances of the K-MER zeolites in cyanoethylation of methanol, under novel non-microwave instant heating, have been investigated. The zeolite in nanosize form shows the best catalytic performance (94.1% conversion, 100% selectivity) while the bullet-like zeolite gives poorest catalytic performance (44.2% conversion, 100% selectivity).