Purpose
The spread of New Delhi metallo-β-lactamase (NDM) encoded by the
bla
NDM
gene has been a global health crisis for many years. Most of
bla
NDM
-harboring bacteria commonly carry various antimicrobial resistance (AMR) genes on their chromosomes or plasmids, leading to limited treatment options. Thus, we aimed to evaluate the synergistic effects of fosfomycin in combination with other antimicrobial agents against
bla
NDM
-harboring carbapenem-resistant
Escherichia coli
(CREC) and to characterize the whole-genome and plasmid sequences of these pathogens.
Methods
Thirty-eight CREC isolates were collected from patients in the Medicine Ward, Songklanagarind Hospital, Thailand. The activity of fosfomycin in combination with other antimicrobial agents against CREC isolates harboring
bla
NDM
on the plasmid was evaluated using the checkerboard method. In this method, the serial dilutions of two antibiotics were mixed with the cultured CREC, the mixtures were incubated, and FICI was calculated to interpret the synergistic activity of the combination. The whole-genome and particular plasmids of these pathogens were sequenced using next-generation sequencing. Sequence analysis, especially on antimicrobial resistance (AMR) genes, mobile-genetic elements (MGEs), and virulence genes was performed using many bioinformatics tools.
Results
Of the
E. coli
38 isolates, only 3 isolates contained the
bla
NDM-1
gene, which is located on the IncN2 plasmid. The combinations of fosfomycin with aminoglycosides, colistin, tigecycline, sitafloxacin, and ciprofloxacin were synergies against
bla
NDM-1
-harboring CREC isolates. Genomic analysis revealed that these isolates harbored many β-lactam resistance genes and other AMR genes that may confer resistance to aminoglycoside, fluoroquinolone, rifampicin, trimethoprim, sulfonamide, tetracycline, and macrolide. Also, various MGEs, especially the
bla
NDM-1
-bearing IncN2 plasmid, were present in these isolates.
Conclusion
Our study demonstrated some synergistic effects of antimicrobial combination against CREC isolates harboring
bla
NDM-1
on the IncN2 plasmid. Also, our data on the whole-genome and plasmid sequences might be beneficial in the control of the spread of
bla
NDM-1
-harboring CREC isolates. The linkages between
bla
NDM-1
-carrying plasmid, patient information, and time of collection will be elucidated to track the horizontal gene transfer in the future.