ABSTRACT:In the adult bone marrow, osteoblasts and adipocytes share a common precursor called mesenchymal stem cells (MSCs). The plasticity between the two lineages has been confirmed over the past decades, and has important implications in the etiology of bone diseases such as osteoporosis, which involves an imbalance between osteoblasts and adipocytes. The commitment and differentiation of bone marrow (BM) MSCs is tightly controlled by the local environment that maintains a balance between osteoblast lineage and adipocyte. However, pathological conditions linked to osteoporosis can change the BM microenvironment and shift the MSC fate to favor adipocytes over osteoblasts, and consequently decrease bone mass with marrow fat accumulation. This review discusses the changes that occur in the BM microenvironment under pathological conditions, and how these changes affect MSC fate. We suggest that manipulating local environments could have therapeutic implications to avoid bone loss in diseases like osteoporosis.