2019
DOI: 10.1016/j.simpat.2018.11.007
|View full text |Cite
|
Sign up to set email alerts
|

The role of simulation and optimization methods in supply chain risk management: Performance and review standpoints

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
47
0
4

Year Published

2019
2019
2023
2023

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 89 publications
(51 citation statements)
references
References 144 publications
0
47
0
4
Order By: Relevance
“…Some literature is conducted to reveal the priority of DM on the condition that proper algorithms are used to deal with the logistics problems [34,35], while other scholars and institutions have applied the relevant data mining methods to the field of logistics, [36][37][38][39]. Most of the studies, however, concentrate on the area of monolithic supply chain management, not specific enough, and the analyses of the S&D issue are always fragmented since the demand can be commonly postulated through the regression and prediction DM algorithm while the supply is hard to define and measure.…”
Section: Data Mining Algorithmmentioning
confidence: 99%
“…Some literature is conducted to reveal the priority of DM on the condition that proper algorithms are used to deal with the logistics problems [34,35], while other scholars and institutions have applied the relevant data mining methods to the field of logistics, [36][37][38][39]. Most of the studies, however, concentrate on the area of monolithic supply chain management, not specific enough, and the analyses of the S&D issue are always fragmented since the demand can be commonly postulated through the regression and prediction DM algorithm while the supply is hard to define and measure.…”
Section: Data Mining Algorithmmentioning
confidence: 99%
“…De igual modo Oliveira et al (2019) abordan la problemática de plantear estrategias para mitigar el riesgo, concluyendo que no hay una alineación entre la respuesta al riesgo y los enfoques de solución del riesgo, ya que las estrategias de respuesta al riesgo deben ser coherentes con las soluciones para mitigar el riesgo. Este estudio analiza la aplicación de herramientas de simulación, modelos de optimización y sistemas de medición de rendimiento para la gestión del riesgo de la cadena de suministro.…”
Section: Cadena De Suministro Verdeunclassified
“…Respecto a la simulación y optimización, los autores proponen el uso de los métodos de simulación para reproducir la dinámica del riesgo y los impactos del riesgo, y el uso de modelos para la gestión del riesgo como el de la colonia de hormigas (Ant Colony) y el método de intersección de límites normales (Normal Boundary Intersection). Dado que no se encontraron estos métodos en los artículos revisados, Oliveira et al (2019) sugieren que se mejore la perspectiva de la optimización basada en la simulación, además propone que se desarrollen medidas de riesgo basadas en Seis Sigma para evaluar los impactos críticos del riesgo en el rendimiento de la cadena de suministro.…”
Section: Cadena De Suministro Verdeunclassified
“…In order to evaluate the results of the production process improvement using simulation, the references [59][60][61][62] recommend the evaluation of lean performance by using seven key performance indicators (KPI) presented in Table 1, from which three indicators specific to the problem to be solved will be used. Of the seven indicators referring to Table 1, VSM allows to deal with three of them: people productivity (PP), value added per person (VAPP), and percent of use of production space (FSU) [30].…”
Section: Evaluation Of Lean Performance For the Vsm Target Simulationmentioning
confidence: 99%