The objective of this project was to use sucrose as a partial substitute for melamine in the synthesis of sucrose-melamine-formaldehyde (SMF) resin. The SMF was synthesized in a base condition. The wet bonding strength, shelf life, and formaldehyde emission of the SMF resin were determined. Fourier transform infrared spectroscopy (FT-IR) and mass spectroscopy (MS) were employed to analyze the chemical structure of the SMF resin. The shelf life of SMF resin increased as the sucrose content increased. Also as the sucrose content increased, the wet bonding strength decreased and the formaldehyde emissions decreased. The FT-IR and MS spectra revealed the structures of sucrose, melamine, and formaldehyde in the SMF, and chemical reactions of SMF resins occurred between the three primary hydroxyl groups of sucrose and methylolmelamine. Based on the results of this study, a sucrose to melamine mole ratio of 0.4:1 was determined to be the optimal ratio for the SMF resin.