Introduction: This study aims to evaluate the influence of the biomechanical behavior of the midpalatal suture (MPS) during the rapid maxillary expansion (RME) when modeled by the Finite Element Method. Methods: Four simulation alternatives are discussed and, for each analysis, the suture is considered as a functional unit with a different mechanical behavior: (i) without MPS elements, (ii) MPS with Young's modulus (E) equal to 1 MPa, (ii) MPS with E equal to 0.01 MPa and (iv) MPS with bilinear elastic behavior. Results: The stress analysis showed that, when MPS is not considered in the model, stress peaks are reduced in magnitude and their distribution is restricted to a smaller area when compared to the model with the inclusion of MPS (E=1 MPa).The increased suture stiffness also has a direct influence on MPS displacements after 30 expander activations.
Conclusion:The consideration of the MPS in RME computer models influences greatly the calculated displacements between the suture bone ends, even as the stress levels in maxillary structures. Furthermore, as proposed for the described model, the elastic bilinear behavior assigned to MPS allows coherent prediction of stresses and displacements results, being a good representation for this suture overall behavior.