Primary isolated dystonia is a hyperkinetic movement disorder whereby involuntary muscle contractions cause twisted and abnormal postures. Dystonia of the cervical spine and upper limb may present as sustained muscle contractions or task-specific activity when using the hand or upper limb. There is little understanding of the pathophysiology underlying dystonia and this presents a challenge for clinicians and researchers alike. Emerging evidence that the cerebellum is involved in the pathophysiology of dystonia using network models presents the intriguing concept that the cerebellum could provide a novel target for non-invasive brain stimulation. Non-invasive stimulation to increase cerebellar excitability improved aspects of handwriting and circle drawing in a small cohort of people with focal hand and cervical dystonia. Mechanisms underlying the improvement in function are unknown, but putative pathways may involve the red nucleus and/or the cervical propriospinal system. Furthermore, recent understanding that the cerebellum has both motor and cognitive functions suggests that non-invasive cerebellar stimulation may improve both motor and non-motor aspects of dystonia. We propose a combination of motor and non-motor tasks that challenge cerebellar function may be combined with cerebellar non-invasive brain stimulation in the treatment of focal dystonia. Better understanding of how the cerebellum contributes to dystonia may be gained by using network models such as our putative circuits involving red nucleus and/or the cervical propriospinal system. Finally, novel treatment interventions encompassing both motor and non-motor functions of the cerebellum may prove effective for neurological disorders that exhibit cerebellar dysfunction.